在學習數學的時候公式是一定要牢牢記住的,下面為大家帶來了高二數學常用導數公式大全,一起來回顧一下吧!
導數(Derivative)是微積分中的重要基礎概念。當函數y=f(x)的自變量X在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df/dx(x0)。
1.y=c(c為常數) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
在推導的過程中有這幾個常見的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]?g'(x)『f'[g(x)]中g(x)看作整個變量,而g'(x)中把x看作變量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函數是x=g(y),則有y'=1/x'
證:1.顯而易見,y=c是一條平行于x軸的直線,所以處處的切線都是平行于x的,故斜率為0。用導數的定義做也是一樣的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.這個的推導暫且不證高階導數公式,因為如果根據導數的定義來推導的話就不能推廣到n為任意實數的一般情況。在得到 y=e^x y'=e^x和y=lnx y'=1/x這兩個結果后能用復合函數的求導給予證明。
3.y=a^x,
⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能導出導函數的,必須設一個輔助的函數β=a^⊿x-1通過換元進行計算。由設的輔助函數可以知道:⊿x=loga(1+β)。
所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β
顯然,當⊿x→0時,β也是趨向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把這個結果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,當a=e時有y=e^x y'=e^x。
4.y=logax
⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x
⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x
因為當⊿x→0時高階導數公式,⊿x/x趨向于0而x/⊿x趨向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,當a=e時有y=lnx y'=1/x。
這時可以進行y=x^n y'=nx^(n-1)的推導了。因為y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx?(nlnx)'=x^n?n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)?lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.類似地,可以導出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在對雙曲函數shx,chx,thx等以及反雙曲函數arshx,archx,arthx等和其他較復雜的復合函數求導時通過查閱導數表和運用開頭的公式與
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能較快捷地求得結果。
以上就是高二數學常用導數公式大全的全部內容,大家都記好了嗎,只有記住公式才能更好地解題!
【高二數學常用導數公式大全】相關文章:
★ 六年級數學圓柱體體積公式
★ 2014初中數學公式:三角函數公式
★ 二年級基本數學公式最新2014
★ 高一數學公式:三角形的面積
★ 小學生數學公式大全:利率問題公式
★ 小學五年級數學公式:分數
★ 初二數學公式歸納:頂點坐標公式
★ 二年級數學公式:面積與體積
★ 小學數學長方形的周長公式
★ 2016年高考數學復數公式
學習是一個邊學新知識邊鞏固的過程,對學過的知識一定要多加練習,這樣才能進步。因此,小編為大家整理了中考數學一次函數測試題,供大家參考。
考點輔導:
【一次函數的圖像分析】【一次函數的性質】【一次函數解析式的常見題型】
試題
【2017中考數學試題練習之一次函數測試題】相關文章:
★ 2016年中考數學備考:模擬試題
★ 2014高考數學題型歸納:三角函數
★ 初一下數學暑假作業測試題(含答案)
★ 2015年初一年級數學暑期練習題
★ 高考數學題型總結之函數常見考點
★ 2015年七年級數學下冊暑假作業練習題
★ 2015年中考數學模擬試題
★ 初中一年級數學家庭作業測試
★ 2014年北京中考數學試題分類匯編:操作探究
★ 高考數學題型總結之反函數考點