2020年陜西新東方在線高考數(shù)學(xué)導(dǎo)數(shù)解題技巧(注意問題)
要把每一次的階段性檢測當(dāng)作
高考的模擬訓(xùn)練,除在數(shù)學(xué)智力方面考查自己外,還應(yīng)在非數(shù)學(xué)智力方面考查自己,如應(yīng)變能力,考試心理,解題和書寫速度等。只有這樣,才能在高考進(jìn)從容應(yīng)付,考出較高的水平。2020年陜西新東方在線高考數(shù)學(xué)導(dǎo)數(shù)解題技巧(注意問題)。
高考數(shù)學(xué)導(dǎo)數(shù)大題解題技巧一:
1.單調(diào)性問題
研究函數(shù)的單調(diào)性問題是導(dǎo)數(shù)的一個(gè)主要應(yīng)用,解決單調(diào)性、參數(shù)的范圍等問題,需要解導(dǎo)函數(shù)不等式,這類問題常常涉及解含參數(shù)的不等式或含參數(shù)的不等式的恒成立、能成立、恰成立的求解。由于函數(shù)的表達(dá)式常常含有參數(shù),所以在研究函數(shù)的單調(diào)性時(shí)要注意對參數(shù)的分類討論和函數(shù)的定義域。
2.極值問題
求函數(shù)y=f(x)的極值時(shí),要特別注意f'(x0)=0只是函數(shù)在x=x0有極值的必要條件,只有當(dāng)f'(x0)=0且在xx0 時(shí),f'(x0)異號,才是函數(shù)y=f(x)有極值的充要條件,此外,當(dāng)函數(shù)在x=x0處沒有導(dǎo)數(shù)時(shí), 在 x=x0處也可能有極值,例如函數(shù) f(x)=|x|在x=0時(shí)沒有導(dǎo)數(shù),但是,在x=0處,函數(shù)f(x)=|x|有極小值。 還要注意的是, 函數(shù)在x=x0有極值,必須是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在確定極值點(diǎn)時(shí),要注意,由f'(x)=0所求的駐點(diǎn)是否在函數(shù)的定義域內(nèi)。
3.切線問題
曲線y=f(x)在x=x0處的切線方程為y-f(x0)=f'(x0)(x-x0),切線與曲線的綜合,可以出現(xiàn)多種變化,在解題時(shí),要抓住切線方程的建立,切線與曲線的位置關(guān)系展開推理,發(fā)展理性思維。關(guān)于切線方程問題有下列幾點(diǎn)要注意:
(1)求切線方程時(shí),要注意直線在某點(diǎn)相切還是切線過某點(diǎn),因此在求切線方程時(shí),除明確指出某點(diǎn)是切點(diǎn)之外,一定要設(shè)出切點(diǎn),再求切線方程;
(2) 和曲線只有一個(gè)公共點(diǎn)的直線不一定是切線,反之,切線不一定和曲線只有一個(gè)公共點(diǎn),因此,切線不一定在曲線的同側(cè),也可能有的切線穿過曲線; (3) 兩條曲線的公切線有兩種可能,一種是有公共切點(diǎn),這類公切線的特點(diǎn)是在切點(diǎn)的函數(shù)值相等,導(dǎo)數(shù)值相等;另一種是沒有公共切點(diǎn),這類公切線的特點(diǎn)是分別求出兩條曲線的各自切線,這兩條切線重合。
4.函數(shù)零點(diǎn)問題 函數(shù)的零點(diǎn)即曲線與x軸的交點(diǎn),零點(diǎn)的個(gè)數(shù)常常與函數(shù)的單調(diào)性與極值有關(guān),解題時(shí)要用圖像幫助思考,研究函數(shù)的極值點(diǎn)相對
于x軸的位置,和函數(shù)的單調(diào)性。
5.不等式的證明問題
證明不等式f(x)≥g(x)在區(qū)間D上成立,等價(jià)于函數(shù)f(x)-g(x)在區(qū)間D上的最小值等于零;而證明不等式f(x)>g(x) 在區(qū)間D上成立,等價(jià)于函數(shù)f(x)-g(x)在區(qū)間D上的最小值大于零,或者證明f(x)min≥g(x)max、 f(x)min>g(x)max。因此不等式的證明問題可以轉(zhuǎn)化為用導(dǎo)數(shù)求函數(shù)的極值或最大(小)值問題。
高考數(shù)學(xué)圓錐曲線問解題方法:
1、注意求軌跡方程時(shí),從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法;
2、注意直線的設(shè)法(法1分有斜率,沒斜率;法2設(shè)x=my+b(斜率不為零時(shí)),知道弦中點(diǎn)時(shí),往往用點(diǎn)差法);注意判別式;注意韋達(dá)定理;注意弦長公式;注意自變量的取值范圍等等;
3、戰(zhàn)術(shù)上整體思路要保7分,爭9分,想12分。
高考數(shù)學(xué)概率解題技巧:
1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);
2、搞清是什么概率模型,套用哪個(gè)公式;
3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4、求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1);
5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意“零散的”的知識點(diǎn)(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件概率公式;
9、注意平均分組、不完全平均分組問題。
高考數(shù)學(xué)導(dǎo)數(shù)大題解題技巧二:
一、三角函數(shù)題
注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時(shí),套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號看象限)時(shí),很容易因?yàn)榇中模瑢?dǎo)致錯(cuò)誤!一著不慎,滿盤皆輸!)。
二、數(shù)列題
1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列;
2、最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;
3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單(所以要有構(gòu)造函數(shù)的意識)。
三、立體幾何題
1、證明線面位置關(guān)系,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),最好要建系;
3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號問題、鈍角、銳角問題)。
四、概率問題
1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);
2、搞清是什么概率模型,套用哪個(gè)公式;
3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;
4、求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1);
5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
7、注意零散的的知識點(diǎn)(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;
8、注意條件概率公式;
9、注意平均分組、不完全平均分組問題。
五、圓錐曲線問題
1、注意求軌跡方程時(shí),從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法;
2、注意直線的設(shè)法(法1分有斜率,沒斜率;法2設(shè)x=my+b(斜率不為零時(shí)),知道弦中點(diǎn)時(shí),往往用點(diǎn)差法);注意判別式;注意韋達(dá)定理;注意弦長公式;注意自變量的取值范圍等等;
3、戰(zhàn)術(shù)上整體思路要保7分,爭9分,想12分。
六、導(dǎo)數(shù)、極值、最值、不等式恒成立(或逆用求參)問題
1、先求函數(shù)的定義域,正確求出導(dǎo)數(shù),特別是復(fù)合函數(shù)的導(dǎo)數(shù),單調(diào)區(qū)間一般不能并,用和或,隔開(知函數(shù)求單調(diào)區(qū)間,不帶等號;知單調(diào)性,求參數(shù)范圍,帶等號);
2、注意最后一問有應(yīng)用前面結(jié)論的意識;
3、注意分論討論的思想;
4、不等式問題有構(gòu)造函數(shù)的意識;
5、恒成立問題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法);
6、整體思路上保6分,爭10分,想14分。
2020年陜西新東方在線高考數(shù)學(xué)導(dǎo)數(shù)解題技巧(注意問題)。在做題的時(shí)候,如果正面思考的時(shí)候受阻,可以用逆向思維的方式去思考,往往能得到突破性的進(jìn)展,多用分析法,從肯定結(jié)論中間分步驟分析,找充分條件來反方向證明。