解題思路對應的就是得分思路,考生把解題的真實過程原原本本寫出來,這個就是“分段得分”的全部秘密 。2020年全國新東方在線考研數學公式大全。
1 導數公式
2 基本積分表公式
3 三角函數的有理式積分公式
4 初等函數公式
5 極限公式
6 反三角函數公式/常用三角函數公式
7 三角函數誘導公式
8 常用三角函數公式
9 和差角公式
10 和差化積公式
11 反三角函數公式
12 倍角公式
13 半角公式
14 正余弦定理公式
15 布萊尼茲公式
16 N次方差公式
17 拉格朗日及柯西中值定理
18 曲率公式
19 定積分的近似計算
20 定積分的應用
21 空間解析幾何和向量代數
22 多元函數微分法及應用
23 微分法在幾何上的應用
24 多元函數的極值及求法
25 重積分及其應用
26 柱面坐標和球面坐標
27 曲線積分
28 曲面積分
29 一階線性微分
30 全微分方程
31 二階微分方程
32 齊次線性微分方程
33 非齊次線性微分方程
34 冪函數及圖形
35 指數函數及圖形
36 反三角函數及圖形
37 對數函數及圖形
38 反三角函數及圖形
兩角和差公式:
1、兩角和與差的三角函數公式:
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
2、二倍角公式:
二倍角的正弦、余弦和正切公式(升冪縮角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/[1-tan^2(α)]
3、半角公式:
半角的正弦、余弦和正切公式(降冪擴角公式)
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
4、萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
萬能公式推導:
附推導:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*
(因為cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
然后用α/2代替α即可。
同理可推導余弦的萬能公式。正切的萬能公式可通過正弦比余弦得到。
5、三倍角公式:
三倍角的正弦、余弦和正切公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]
三倍角公式推導:
附推導:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^3(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式聯想記憶:
記憶方法:諧音、聯想
正弦三倍角:3元減4元3角(欠債了(被減成負數),所以要“掙錢”(音似“正弦”))
余弦三倍角:4元3角減3元(減完之后還有“余”)
Ps:注意函數名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
另外的記憶方法:
正弦三倍角:山無司令(諧音為三無四立)三指的是"3倍"sinα,無指的是減號,四指的是"4倍",立指的是sinα立方
余弦三倍角:司令無山與上同理
6、和差化積公式
三角函數的和差化積公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
三角函數的積化和差公式:
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
和差化積公式推導:
附推導:
首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
這樣,我們就得到了積化和差的四個公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
有了積化和差的四個公式以后,我們只需一個變形,就可以得到和差化積的四個公式。
我們把上述四個公式中的a+b設為x,a-b設為y,那么a=(x+y)/2,b=(x-y)/2
把a,b分別用x,y表示就可以得到和差化積的四個公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
2020年全國新東方在線
考研數學公式大全。數學解題過程中卡在某個知識點上是常見的。這個時候我們可以先承認中間結論,往后推理看能不能得到結論。