axioms的音標(biāo)是[?e?k???mz],中文釋義為公理; 公理法。基本翻譯為“公理; 公理系統(tǒng); 公理法; 公理法系統(tǒng)”。速記技巧可以考慮使用諧音記憶法,可以將公理的英文單詞“axioms”諧音理解為“埃克斯作業(yè)”,這樣方便記憶。
以下是關(guān)于公理(axioms)的一些英文詞源及其變化形式和相關(guān)單詞:
1. Axiom - 原意為“公理”,通常指被普遍接受的原則或真理,沒(méi)有證明或驗(yàn)證的過(guò)程。它的變化形式包括其復(fù)數(shù)形式axioms,以及其過(guò)去式axiomized和過(guò)去分詞axiomized。相關(guān)單詞包括proof(證明)、validate(驗(yàn)證)等。
2. Postulate - 原意為“假定”,通常指根據(jù)已知事實(shí)或經(jīng)驗(yàn),提出作為論證基礎(chǔ)的前提或假設(shè)。它的變化形式包括其復(fù)數(shù)形式postulates和過(guò)去式postulated。相關(guān)單詞包括supposition(假定)、presuppose(預(yù)先假定)等。
3. Principle - 原意為“原理”、“原則”,通常指在某一領(lǐng)域或?qū)W科中,被廣泛接受并用于指導(dǎo)實(shí)踐的基本準(zhǔn)則或規(guī)則。它的變化形式包括其復(fù)數(shù)形式principles和過(guò)去式principle-lize等。相關(guān)單詞包括fundamental(根本的)、tenet(信條)等。
4. Assumption - 原意為“假定”、“假設(shè)”,通常指根據(jù)某種理由或目的,做出某種推測(cè)或猜測(cè)。它的變化形式包括其復(fù)數(shù)形式assumptions和過(guò)去式assumed等。相關(guān)單詞包括 hypothesis(假設(shè))、conjecture(猜測(cè))等。
這些詞源都與科學(xué)、哲學(xué)、數(shù)學(xué)等領(lǐng)域中的基本原則和原理有關(guān),通過(guò)這些詞源可以更好地理解公理的含義和重要性。同時(shí),這些詞也反映了人類在探索真理和知識(shí)的過(guò)程中,不斷提出假設(shè)、驗(yàn)證和證明的過(guò)程。
常用短語(yǔ):
1. The law of the excluded middle
2. The principle of parsimony
3. The axiom of choice
4. The postulate of infinity
5. The postulate of the existence of irrational numbers
6. The axiom of infinity
7. The postulate of the existence of real numbers
雙語(yǔ)例句:
1. The axiom of choice helps us to solve difficult problems in analysis. (選擇公理有助于我們解決分析中的難題。)
2. The postulate of infinity is fundamental to modern mathematics. (無(wú)窮公理是現(xiàn)代數(shù)學(xué)的基礎(chǔ)。)
3. The law of the excluded middle is a useful tool for proving theorems in logic. (排中律是一個(gè)有用的工具,用于邏輯定理的證明。)
4. Parsimony is a guiding principle in scientific research, encouraging us to choose the simplest explanation for a phenomenon. (簡(jiǎn)約原則是科學(xué)研究中的指導(dǎo)原則,它鼓勵(lì)我們?yōu)橐环N現(xiàn)象選擇最簡(jiǎn)單的解釋。)
5. The postulate of irrational numbers is essential for understanding certain aspects of mathematical physics. (對(duì)于理解數(shù)學(xué)物理的某些方面,無(wú)理數(shù)公設(shè)是必不可少的。)
6. The axiom of infinity is fundamental to many branches of mathematics, allowing us to consider infinite sets and infinite sequences of numbers. (無(wú)窮公理對(duì)于數(shù)學(xué)許多分支是基礎(chǔ),它使我們能夠考慮無(wú)限集合和無(wú)限數(shù)字序列。)
英文小作文:
The axiom of choice and its impact on mathematics
The axiom of choice plays a fundamental role in modern mathematics, allowing us to consider problems that would otherwise be intractable. It provides a framework for understanding certain complex mathematical concepts, such as measure and topology, and it has had a profound impact on the development of many branches of mathematics.
The axiom of choice states that it is always possible to select an element from an infinite set. This seemingly simple statement has profound implications for mathematical reasoning, as it allows us to consider infinite sets and sequences of numbers, which are not possible under more restrictive axioms. It also provides a solution to certain seemingly insoluble problems in analysis, allowing mathematicians to develop new theories and methods that have transformed the field.
The axiom of choice is not without controversy, however, as it has been criticized for being too general and lacking in precision. Nevertheless, its importance in mathematics cannot be denied, and it continues to be a fundamental tool for understanding and solving complex mathematical problems.