faradaic的音標(biāo)是[f??r?d??k],意思是“法拉第定律;電解定律”。
速記技巧:根據(jù)音標(biāo)可以快速記憶其發(fā)音,此外,該詞與法拉第定律相關(guān),可以結(jié)合該定律的內(nèi)容進(jìn)行記憶。
Faradaic這個(gè)詞來(lái)源于希臘語(yǔ),意思是“與金屬有關(guān)的”。它的變化形式包括Farad-,F(xiàn)arad-ic,F(xiàn)aradic等。
相關(guān)單詞:
1. battery - 電池:這個(gè)詞由“電池”和“farad”組成,表示電池是由電化學(xué)反應(yīng)產(chǎn)生電力的裝置。
2. electrolysis - 電解:這個(gè)詞由“電解”和“farad”組成,表示通過(guò)電化學(xué)反應(yīng)分解或合成物質(zhì)的工藝過(guò)程。
3. galvanism - 電流刺激:這個(gè)詞由“電流刺激”和“farad”組成,表示通過(guò)電流刺激人體或生物體的過(guò)程。
4. galvanize - 電鍍:這個(gè)詞由“電鍍”和“farad”組成,表示通過(guò)電化學(xué)反應(yīng)將金屬沉積在物體表面的一種工藝過(guò)程。
5. voltaic - 伏特:這個(gè)詞由“伏特”和“farad”組成,表示電壓?jiǎn)挝唬渤S糜诿枋鲭姵鼗螂娀瘜W(xué)反應(yīng)中的電動(dòng)勢(shì)。
6. electroporation - 電穿孔:這個(gè)詞由“電穿孔”和“faradic”組成,表示通過(guò)電場(chǎng)使細(xì)胞膜發(fā)生穿孔的過(guò)程。
7. electropulse - 電脈沖:這個(gè)詞由“電脈沖”和“faradic”組成,表示通過(guò)電場(chǎng)產(chǎn)生的脈沖信號(hào)。
8. electropathy - 電療法:這個(gè)詞由“電療法”和“farad”組成,表示使用電場(chǎng)進(jìn)行治療的方法。
9. electrosynthesis - 電合成:這個(gè)詞由“電合成”和“faradic”組成,表示通過(guò)電化學(xué)反應(yīng)進(jìn)行物質(zhì)合成的過(guò)程。
10. electromotive force - 電動(dòng)力勢(shì):這個(gè)詞由“電動(dòng)力勢(shì)”和“faradic”組成,表示在電化學(xué)反應(yīng)中產(chǎn)生的電動(dòng)勢(shì)。
常用短語(yǔ):Faradaic cell, Faradaic reaction, Faradaic impedance, Faradaic current, Faradaic process, Faradaic resistance, Faradaic surface
雙語(yǔ)例句:
1. The Faradaic process is a crucial factor in determining the efficiency of a battery.
2. The Faradaic current is directly proportional to the amount of charge transferred.
3. The Faradaic surface determines the number of active sites available for reaction.
4. The Faradaic impedance of a battery indicates its level of internal resistance.
5. A battery with a low Faradaic resistance delivers more power than one with a high resistance.
6. The Faradaic process is influenced by the nature of the electrode materials used.
7. Understanding the Faradaic process is essential for optimizing battery design and performance.
英文小作文:
Faraday"s Law of Electrolysis is a fundamental concept in electrochemistry that describes the transfer of charge between electrodes in an electrolytic solution. For example, when we use a battery to power a device, we are relying on Faraday"s Law to facilitate the transfer of electrons between the electrodes and the device.
The Faradaic process refers to the transfer of electrons between electrodes in an electrolytic solution, and it is crucial for determining the efficiency of a battery. The Faradaic current is directly proportional to the amount of charge transferred during the electrolysis process, and it can be used to measure the performance of a battery.
The Faradaic surface, on the other hand, refers to the area of the electrode that is available for reaction. It determines the number of active sites available for reaction and therefore has a significant impact on the performance of a battery. The Faradaic impedance of a battery indicates its level of internal resistance, and a battery with a low resistance delivers more power than one with a high resistance.
Understanding these fundamental concepts is essential for optimizing battery design and performance, and it also provides valuable insights into other electrochemical systems such as fuel cells and solar cells.